stMMR
论文阅读记录
stMMR
- 标题:stMMR: accurate and robust saptial domain identification from spatially resolved transcriptomics with multimodal feature representation
- 作者:Shandong University
- 发表会议/期刊:GigaScience
- 年份:2024
- 链接:stMMR
主要内容简介
- Motivation:
融合多模态困难,多模态数据间具有显著异质性,而且在数据尺度和分辨率上存在差异
方法与创新点
总体框架:
3 steps: multimodal feature embedding, feature fusion, and feature reconstruction
方法概述:
Multimodal feature embedding
gene expression: $ G \in \mathbb{R}^{n \times p} $ (n spots, p genes)
histological image: $ H \in \mathbb{R}^{n \times m} $ (m image features)
spatial location: 如图构建无向加权图

2层GCN编码器进行图像特征H 和 基因表达特征G 的消息传递与聚合($E^0=H, E^0=G$,输出$E_H和E_G$):

Feature fusion
单模态内($E_H和E_G$)spots之间的全局关系(a normalized attention module),输出$E_{AH}和E_{AG}$

全连接降维,全连接融合,Loss,三部分整合


Feature reconstruction
- ZINB模型重构基因表达

- MSE重构图像特征

- ZINB模型重构基因表达
Objective function

Results
- stMMR enhances detection of stratified architectural patterns in human dorsolateral prefrontal cortex tissue
- stMMR enhances spatial gene expression profiling and structural characterization
- stMMR deciphers evolving cell lineage structures in the chicken heart ST dataset
- stMMR accurately identifies tumor region in human breast cancer
- stMMR dissects cell-type differences in a lung cancer SRT dataset based on NanoString technology
完结撒花
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来源 小鱼日记!








