stMMR
论文阅读记录stMMR 标题:stMMR: accurate and robust saptial domain identification from spatially resolved transcriptomics with multimodal feature representation 作者:Shandong University 发表会议/期刊:GigaScience 年份:2024 链接:stMMR 主要内容简介 Motivation:融合多模态困难,多模态数据间具有显著异质性,而且在数据尺度和分辨率上存在差异 方法与创新点 总体框架:3 steps: multimodal feature embedding, feature fusion, and feature reconstruction 方法概述: Multimodal feature embedding gene expression: $ G \in \mathbb{R}^{n \times p} $ (n spots, p genes) histological...
Bering
论文阅读记录Bering 标题:Bering: joint cell segmentation and annotation for spatial transcriptomics with transferred graph embeddings 作者:Harvard University 发表会议/期刊:Nature Communications 年份:2025 链接:Bering 主要内容简介 Motivation:Some tissues have densely packed cells with unclear boundaries, making it difficult to perform accurate segmentation Task:Cell segmentation and annotation for spatial transcriptomics 方法与创新点 总体框架: 方法概述: 图构建,NGC 图卷积和全连接网络 节点分类 边嵌入由三部分组成- node representation-...
IE-HERCL
论文阅读记录IE-HERCL 标题:Image-Enhanced Hybrid Encoding with Reinforced Contrastive Learning for Spatial Domain Identification in Spatial Transcriptomics 作者:Central South University 发表会议/期刊:IJCAI 年份:2025 链接:IE-HERCL 主要内容简介 Motivation: Exisisting methods fail to account for complex interdependencies between modalities. 方法与创新点 总体框架: 方法概述: Multimodal Feature Representation Learning utilize AE to extract & Loss function L_rec: $$L^g_{rec} = | X_{g,i} -...
stLearn
论文阅读记录stLearn 标题:Robust mapping of spatiotemporal trajectories and cell–cell interactions in healthy and diseased tissues 作者:The University of Queensland 发表会议/期刊:Nature Communications 年份:2023 链接:stLearn 主要内容简介 Motivation: the (re)construction of spatio-temporal trajectories the study of cell–cell interactions the improvement of spatial data quality by imputation 方法与创新点 总体框架: 方法概述: pseudo-time-space (PSTS) for spatio-temporal trajectory inference DPT 与 Space...
GraphST
论文阅读记录GraphST 标题:Spatially informed clustering, integration,and deconvolution of spatial transcriptomics with GraphST 作者:National University of Singapore (NUS) 发表会议/期刊:Nature Communications 年份:2023 链接:GraphST 主要内容简介 Motivation: 反卷积未利用空间信息 多样本整合未利用空间信息 方法与创新点 总体框架: 方法概述: graph self-supervised contrastive learning framework: data augmentation GNN-based encoder for representation learning self-supervised contrastive learning for representation refinement ...
DeepST
论文阅读记录DeepST 标题:DeepST: identifying spatial domains in spatial transcriptomics by deep learning 作者:Harbin Institute of Technology 发表会议/期刊:Nucleic Acids Research 年份:2022 链接:DeepST 主要内容简介 Motivation: 先前方法主要依赖线性主成分分析来提取基因表达的高变特征,因此无法建模复杂的非线性相互作用 未充分利用空间信息,且在预测组织结构方面存在局限 大多数分析大量ST数据的空间方法无法正确校正批次效应,且不能处理其他空间组学数据,使其通用性不足 方法与创新点 总体框架: 方法概述: Spatial data...
STAGATE
论文阅读记录STAGATE 标题:Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder 作者:University of Chinese Academy of Sciences 发表会议/期刊:Nature Communications 年份:2022 链接:STAGATE 主要内容简介 Motivation: 邻域相似性是预定义的,无法自适应学习。 方法与创新点 总体框架: 方法概述: Construction of SNN (Construction of cell type-aware SNN (optional)) Graph attention auto-encoder Encoder Decoder (迭代和encoder相似) graph attention layer -graph...
Spatial-MGCN and MAFN details supplement
论文阅读记录Spatial-MGCN 标题:Spatial-MGCN: a novel multi-view graph convolutional network for identifying spatial domains with attention mechanism 作者:Hunan University 发表会议/期刊:Briefings in Bioinformatics 年份:2023 链接:Spatial-MGCN 主要内容简介 Motivation:While increasingly computational methods have been developed for spatial domain detection, most of them cannot adaptively learn the complex relationship between gene expression and spatial information, leading to sub-optimal...
STMGraph
论文阅读记录STMGraph 标题:STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model 作者:Fujian Agriculture and Forestry University 发表会议/期刊:Briefings in Bioinformatics 年份:2025 链接:STMGraph 主要内容简介 Motivation:the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and...
基于代码理解MAFN
📖 论文阅读记录1. 基本信息 论文题目:Multi-View Adaptive Fusion Network for Spatially Resolved Transcriptomics Data Clustering 作者/机构:China University of Geosciences 会议/期刊:IEEE TRANSACTIONS 年份:DECEMBER 2024 论文链接:MAFN_IEEE 2. 方法总览 总体框架: 关键技术路线: spatial graph G1(euclidean distance & r), feature graph G2(cosine similarity & kNN) Inter-View Complementary Features Learning (GCN) Intra-View Discriminative Features Learning(GCN + Lc –> (S-I)^2) Cross-View Attention Module...