论文阅读记录

IE-HERCL

  • 标题:Image-Enhanced Hybrid Encoding with Reinforced Contrastive Learning for Spatial Domain Identification in Spatial Transcriptomics
  • 作者:Central South University
  • 发表会议/期刊:IJCAI
  • 年份:2025
  • 链接IE-HERCL

主要内容简介

  • Motivation:

    Exisisting methods fail to account for complex interdependencies between modalities.

方法与创新点

  • 总体框架

Generalization

  • 方法概述:

    1. Multimodal Feature Representation Learning

      • utilize AE to extract & Loss function L_rec:

        $$
        L^g_{rec} = | X_{g,i} - f^g_{\theta_d}(f^g_{\theta_e}(X_{g,i})) |^2_F
        $$

      • ultilize ResNet50 to extract $Z_{net}$ then use AE:
        ot

      • GraphSAGE encoder:

        $$
        Z^v_i = \sigma(W_e \cdot \text{Concat}(X_i, \text{Aggregate}({X_j \mid j \in N(i)})))
        $$

      • intra-modal attention & cross-modal attention:

        • Intra-modal attention:
          $$
          Z_f^g = \alpha_{ae_g} Z_g + \alpha_{gs_g} Z_{gs}^g
          $$

          $$
          Z_f^{img} = \alpha_{ae}^{img} Z_{img} + \alpha_{gs_img} Z^{img}_{gs}
          $$

        • Cross-modal attention:
          $$
          Z = \beta_{g} Z^g_f + \beta_{img} Z^{img}_f
          $$

      • Reconstruction:

      $$
      \hat{X}_{g,i} = \sigma(W_d \cdot \text{Concat}(Z_i, \text{Aggregate}({Z_j \mid j \in N(i)})))
      $$

      $$
      L_{rec}^{gene} = | X_{g,i} - \hat{X}_{g,i} |^2_F
      $$

    2. Negative Sample Mitigation Strategy in Contrastive Learning

      • contrastive loss :
        Generalization
        Generalization
    3. Optimal Transport-Based Representation Optimization

      • Clustering and Auxiliary Distributions
        Generalization

      • Optimal Transport Objective
        ot
        ot

      • 借鉴way博客补充最优传输的思想:
        ot

      • Overall Optimization Objective
        ot

实验

  • Evaluation Metrics:
    • 调整兰德指数(ARI)、标准化互信息(NMI)、调整互信息(AMI)、Fowlkes-Mallows指数(FMI)和同质性评分(HS)