论文阅读记录

Bering

  • 标题:Bering: joint cell segmentation and annotation for spatial transcriptomics with transferred graph embeddings
  • 作者:Harvard University
  • 发表会议/期刊:Nature Communications
  • 年份:2025
  • 链接Bering

主要内容简介

  • Motivation:
    Some tissues have densely packed cells with unclear boundaries, making it difficult to perform accurate segmentation

  • Task:
    Cell segmentation and annotation for spatial transcriptomics

方法与创新点

  • 总体框架

Generalization

  • 方法概述:
    1. 图构建,NGC
      Generalization

    2. 图卷积和全连接网络
      Generalization

    3. 节点分类
      Generalization

    4. 边嵌入由三部分组成
      - node representation
      Generalization
      - distance kernels($\mu_d, \sigma_d$可学习参数)
      Generalization
      - image representation(使用CNN+SPP,边作为对角线图像)
      Generalization
      Edge embedding:
      Generalization
      Edge classification(预测边标签,是否同一个细胞内):
      Generalization
      聚类算法划分细胞(Leiden算法):
      Generalization

    5. Other details

      • cell type annotation details
      • transfer learning
      • NGC Matrix
      • Generation of validation data: FOVs